A High-Order Solver for the Heat Equation in 1D domains with Moving Boundaries
نویسندگان
چکیده
We describe a fast high-order accurate method for the solution of the heat equation in domains with moving Dirichlet or Neumann boundaries and distributed forces. We assume that the motion of the boundary is prescribed. Our method extends the work of Greengard and Strain [Comm. Pure Appl. Math., XLIII (1990), pp. 949–963]. Our scheme is based on a time-space Chebyshev pseudo-spectral collocation discretization, which is combined with a recursive product quadrature rule to accurately and efficiently approximate convolutions with Green's function for the heat equation. We present numerical results that exhibit up to eighth-order convergence rates. Assuming N time steps and M spatial discretization points, the evaluation of the solution of the heat equation at the same number of points in space-time requires O(NM log M) work. Thus, our scheme can be characterized as "fast"; that is, it is work-optimal up to a logarithmic factor.
منابع مشابه
Numerical Analysis of Transient Heat Transfer in Radial Porous Moving Fin with Temperature Dependent Thermal Properties
In this article, a time dependent partial differential equation is used to model the nonlinear boundary value problem describing heat transfer through a radial porous moving fin with rectangular profile. The study is performed by applying a numerical solver in MATLAB (pdepe), which is a centered finite difference scheme. The thermal conductivity and fin surface emissivity are linearly ...
متن کاملSolution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method
The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...
متن کاملTemperature profile of a power-law fluid over a moving wall with arbitrary injection/suction and internal heat generation/absorption
The heat transfer for a non-Newtonian power-law fluid over a moving surface is investigated by applying a uniform suction/injection velocity profile. The flow is influenced by internal heat generation/absorption. The energy equation is solved at constant surface temperature condition. The Merk-Chao series is applied to obtain a set of ODEs instead of a complicated PDE. The converted ordinary diffe...
متن کاملAn Efficient and High-Order Accurate Boundary Integral Solver for the Stokes Equations in Three Dimensional Complex Geometries
This dissertation presents an efficient and high-order boundary integral solver for the Stokes equations in complex 3D geometries. The targeted applications of this solver are the flow problems in domains involving moving boundaries. In such problems, traditional finite element methods involving 3D unstructured mesh generation experience difficulties. Our solver uses the indirect boundary integ...
متن کاملHigh-accuracy alternating segment explicit-implicit method for the fourth-order heat equation
Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 29 شماره
صفحات -
تاریخ انتشار 2007